Injective Continuous Reduction on the Borel subsets of the Baire space.

Salvatore Scamperti

30 January 2023 Winter School in Abstract Analysis 2023 section Set Theory & Topology

Introduction

- 2 Injective Continuous Reduction on the Baire space
- **3** Work in progress...

- Fix a topological space X;
- Fix a reduction condition (i.e. a class of function *F* from and to X such that id_X is in *F* and *F* is closed under composition).

Let $A, B \in \Gamma \subseteq \mathcal{P}(X)$ $A \leq B \Leftrightarrow \exists f \in \mathcal{F} \ (f^{-1}(B) = A)$

• Fix a topological space X;

• Fix a reduction condition (i.e. a class of function \mathcal{F} from and to X such that id_X is in \mathcal{F} and \mathcal{F} is closed under composition).

Let $A, B \in \Gamma \subseteq \mathcal{P}(X)$ $A \leq B \Leftrightarrow \exists f \in \mathcal{F} \ (f^{-1}(B) = A)$

- Fix a topological space X;
- Fix a reduction condition (i.e. a class of function *F* from and to X such that id_X is in *F* and *F* is closed under composition).

Let
$$A, B \in \Gamma \subseteq \mathcal{P}(X)$$

 $A \leq B \Leftrightarrow \exists f \in \mathcal{F} \ (f^{-1}(B) = A)$

- Fix a topological space X;
- Fix a reduction condition (i.e. a class of function \mathcal{F} from and to X such that id_X is in \mathcal{F} and \mathcal{F} is closed under composition).

- Fix a topological space X;
- Fix a reduction condition (i.e. a class of function \mathcal{F} from and to X such that id_X is in \mathcal{F} and \mathcal{F} is closed under composition).

Let $A, B \in \Gamma \subseteq \mathcal{P}(X)$

$$A \leqslant B \Leftrightarrow \exists f \in \mathcal{F} \ (f^{-1}(B) = A)$$

• $X = \mathbb{N}^{\mathbb{N}}$, $\Gamma = \operatorname{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};$
- Borel-amenable Reduction (Motto Ros, 2007) \mathcal{F} is amenable (for example $\Delta^0_{\mathcal{E}}$ -function);
- Contraction Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is Lipschitz with a positive constant } < 1\};$
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R})$, $\mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}$, $\Gamma = \operatorname{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};$
- Borel-amenable Reduction (Motto Ros, 2007) *F* is amenable (for example Δ⁰_ε-function);
- Contraction Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is Lipschitz with a positive constant } < 1\};$
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R})$, $\mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}$, $\Gamma = \operatorname{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};\$
- Borel-amenable Reduction (Motto Ros, 2007) *F* is amenable (for example Δ⁰_ε-function);
- Contraction Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is Lipschitz with a positive constant } < 1\};$
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R})$, $\mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}$, $\Gamma = \mathrm{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};\$
- Borel-amenable Reduction (Motto Ros, 2007) \mathcal{F} is amenable (for example $\Delta^0_{\mathcal{E}}$ -function);
- Contraction Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is Lipschitz with a positive constant } < 1\};$
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R}), \ \mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}, \ \Gamma = \mathrm{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};\$
- Borel-amenable Reduction (Motto Ros, 2007) \mathcal{F} is amenable (for example $\Delta^0_{\mathcal{E}}$ -function);
- Contraction Reduction (Motto Ros, 2012)
 \$\mathcal{F} = \{f | f is Lipschitz with a positive constant < 1\};
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R}), \ \mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}, \ \Gamma = \mathrm{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};\$
- Borel-amenable Reduction (Motto Ros, 2007) *F* is amenable (for example Δ⁰_E-function);
- Contraction Reduction (Motto Ros, 2012)
 \$\mathcal{F} = \{f | f is Lipschitz with a positive constant < 1\};
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R}), \ \mathcal{F} = \{f \mid f \text{ is continous}\}.$

• $X = \mathbb{N}^{\mathbb{N}}, \ \Gamma = \mathrm{BOR}(\mathbb{N}^{\mathbb{N}})$

- Wadge Reduction (Wadge, 1972) $\mathcal{F} = \{f \mid f \text{ is continuous}\};$
- Borel Reduction (Andretta and Martin, 2003) $\mathcal{F} = \{f \mid f \text{ is Borel}\};\$
- Borel-amenable Reduction (Motto Ros, 2007) *F* is amenable (for example Δ⁰_E-function);
- Contraction Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is Lipschitz with a positive constant } < 1\};$
- Costant function Reduction (Motto Ros, 2012) $\mathcal{F} = \{f \mid f \text{ is constant } \}.$
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) $X = \mathbb{R}$, $\Gamma = BOR(\mathbb{R})$, $\mathcal{F} = \{f \mid f \text{ is continous}\}.$

Fix X, Γ and \mathcal{F} , we can define a partial order induced by \mathcal{F} , i.e. $(\Gamma, \leq) \neq_{\equiv}$, where $A \equiv B$ if and only if $A \leq B$ and $B \leq A$.

First Goal: Description of the partial order induced by the reduction.

Second Goal: Study of the partial order up to order-isomorphism over a class of topological spaces. Fix X, Γ and \mathcal{F} , we can define a partial order induced by \mathcal{F} , i.e. $(\Gamma, \leq) \neq_{\equiv}$, where $A \equiv B$ if and only if $A \leq B$ and $B \leq A$.

First Goal: Description of the partial order induced by the reduction.

Second Goal: Study of the partial order up to order-isomorphism over a class of topological spaces.

Fix X, Γ and \mathcal{F} , we can define a partial order induced by \mathcal{F} , i.e. $(\Gamma, \leq) \neq_{\equiv}$, where $A \equiv B$ if and only if $A \leq B$ and $B \leq A$.

First Goal: Description of the partial order induced by the reduction.

Second Goal: Study of the partial order up to order-isomorphism over a class of topological spaces.

What does "description" mean in this talk? It means answering the question: Is it wqo?

Definition

Let (Q, \leqslant) be a partial order, then Q is wqo if

- Q is well-founded, i.e. there are no infinite strictly decreasing sequence;
- there are no infinite antichains, i.e. any infinite $A \subseteq Q$ admits p and q such that $p \leq q$.

Examples of wqo: (\mathbb{N}, \leq) , (α, \leq) , $(\mathbb{N}^n, \leq_{\text{prod-ord}})$. Examples of not wqo: $(\mathbb{N}, |)$, $(\mathbb{N}^{\mathbb{N}}, \leq_{\text{lex}})$, $(\mathbb{N}, =)$. What does "description" mean in this talk? It means answering the question: Is it wqo?

Definition

Let (Q, \leqslant) be a partial order, then Q is work if

- Q is well-founded, i.e. there are no infinite strictly decreasing sequence;
- there are no infinite antichains, i.e. any infinite $A \subseteq Q$ admits p and q such that $p \leq q$.

Examples of wqo: (\mathbb{N}, \leq) , (α, \leq) , $(\mathbb{N}^n, \leq_{\text{prod-ord}})$. Examples of not wqo: $(\mathbb{N}, |)$, $(\mathbb{N}^{\mathbb{N}}, \leq_{\text{lex}})$, $(\mathbb{N}, =)$.

- Wadge Reduction (Wadge, 1972) Good
- Borel Reduction (Andretta and Martin, 2003) Good
- Wadge Reduction on \mathbb{R} (Hertling 1996, Schlicht 2012) Bad
- Borel-amenable Reduction (Motto Ros, 2007) Good
- Contraction Reduction (Motto Ros, 2012) Bad
- Costant function Reduction (Motto Ros, 2012) Bad

The Baire space $\mathbb{N}^{\mathbb{N}}$ is a zero-dimensional Polish space. Its topology is generated by $N_s = \{x \in \mathbb{N}^{\mathbb{N}} \mid s \sqsubseteq x\}$, where $s \in \mathbb{N}^{<\mathbb{N}}$.

Σ_1^0	Π_1^0	Δ_1^0
Σ_2^0	Π^0_2	Δ_2^0

From now assume that Γ is closed under continuous preimage, that is if $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous and $A \in \Gamma$ then $f^{-1}(A) \in \Gamma$.

Examples:

- Σ_2^0
- $\operatorname{Diff}_3(\Sigma_1^0(\mathbb{N}^{\mathbb{N}}))$

The Baire space $\mathbb{N}^{\mathbb{N}}$ is a zero-dimensional Polish space. Its topology is generated by $N_s = \{x \in \mathbb{N}^{\mathbb{N}} \mid s \sqsubseteq x\}$, where $s \in \mathbb{N}^{<\mathbb{N}}$.

Σ_1^0	Π_1^0	Δ_1^0
Σ_2^0	Π^0_2	Δ_2^0

From now assume that Γ is closed under continuous preimage, that is if $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous and $A \in \Gamma$ then $f^{-1}(A) \in \Gamma$.

Examples:

- Σ_2^0
- $\operatorname{Diff}_3(\Sigma_1^0(\mathbb{N}^{\mathbb{N}}))$

What about the description of the Wadge reduction in the class of zero-dimensional Polish spaces?

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

For each zero-dimensional Polish space, there exists a pair of ordinals which completely determines the structure of \mathcal{W}_X up to order-isomorphism.

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

Let X be a zero-dimensional Polish space with at least two points, and assume AD if X is uncountable. Then there is no Borel procedure to determine which zero-dimensional Polish spaces Y gives $\mathcal{W}_Y \equiv_W \mathcal{W}_X$.

What about the description of the Wadge reduction in the class of zero-dimensional Polish spaces?

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

For each zero-dimensional Polish space, there exists a pair of ordinals which completely determines the structure of W_X up to order-isomorphism.

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

Let X be a zero-dimensional Polish space with at least two points, and assume AD if X is uncountable. Then there is no Borel procedure to determine which zero-dimensional Polish spaces Y gives $\mathcal{W}_Y \equiv_W \mathcal{W}_X$. What about the description of the Wadge reduction in the class of zero-dimensional Polish spaces?

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

For each zero-dimensional Polish space, there exists a pair of ordinals which completely determines the structure of W_X up to order-isomorphism.

Theorem (R. Carroy, L. Motto Ros, S. - 202?)

Let X be a zero-dimensional Polish space with at least two points, and assume AD if X is uncountable. Then there is no Borel procedure to determine which zero-dimensional Polish spaces Y gives $\mathcal{W}_Y \equiv_W \mathcal{W}_X$.

Class of function:

$$\mathcal{F}_i = \{ f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \mid f \text{ is continuous and injective} \}$$

Definition

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, we write $A \leq_i B$ if and only if there exists $f \in \mathcal{F}_i$ such that $f^{-1}(B) = A$.

Corollary of Theorem (F. van Engelen, A. W. Miller, J. R. Steel - 1985)

The partial order $(\mathbf{\Delta_2^0}, \leqslant_{\mathrm{i}})$ is wqo.

They were not able to go any further in the article.

Class of function:

$$\mathcal{F}_i = \{ f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \mid f \text{ is continuous and injective} \}$$

Definition

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, we write $A \leq_i B$ if and only if there exists $f \in \mathcal{F}_i$ such that $f^{-1}(B) = A$.

Corollary of Theorem (F. van Engelen, A. W. Miller, J. R. Steel - 1985)

The partial order $(\Delta_2^0, \leqslant_i)$ is wqo.

They were not able to go any further in the article.

Class of function:

$$\mathcal{F}_i = \{ f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \mid f \text{ is continuous and injective} \}$$

Definition

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, we write $A \leq_i B$ if and only if there exists $f \in \mathcal{F}_i$ such that $f^{-1}(B) = A$.

Corollary of Theorem (F. van Engelen, A. W. Miller, J. R. Steel - 1985)

The partial order $(\Delta_2^0, \leqslant_i)$ is wqo.

They were not able to go any further in the article.

While in the Cantor Space, $2^{\mathbb{N}}$...

Definition: a subset $A \subseteq 2^{\mathbb{N}}$ is true in Γ if $A \in \Gamma$ then $2^{\mathbb{N}} \setminus A \notin \Gamma$. **Definition:** $\Gamma \subseteq BOR(2^{\mathbb{N}})$ is reasonably closed if ...

Proposition (L. Harrington, ? - J. R. Steel, 1977)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that Γ is reasonably closed and $A, B \in \Gamma$. If B is a true set for Γ and $A \leq_{W} B$ then $A \leq_{i} B$.

Proposition (R. Carroy, A. Medini, S. Müller - 2020)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that $\check{\Gamma} \neq \Gamma$. If $\mathcal{L}(\Gamma) \geq 1$ and $\operatorname{Diff}_n(\Sigma_2^0(2^{\mathbb{N}})) \subseteq \Gamma$ for each $n \in \omega$ then Γ is reasonably closed.

Proposition (L. Harrington, ? - J. R. Steel, 1977)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that Γ is reasonably closed and $A, B \in \Gamma$. If B is a true set for Γ and $A \leq_{W} B$ then $A \leq_{i} B$.

Proposition (R. Carroy, A. Medini, S. Müller - 2020)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that $\check{\Gamma} \neq \Gamma$. If $\mathcal{L}(\Gamma) \geq 1$ and $\operatorname{Diff}_n(\Sigma_2^0(2^{\mathbb{N}})) \subseteq \Gamma$ for each $n \in \omega$ then Γ is reasonably closed.

Proposition (L. Harrington, ? - J. R. Steel, 1977)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that Γ is reasonably closed and $A, B \in \Gamma$. If B is a true set for Γ and $A \leq_{W} B$ then $A \leq_{i} B$.

Proposition (R. Carroy, A. Medini, S. Müller - 2020)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that $\check{\Gamma} \neq \Gamma$. If $\mathcal{L}(\Gamma) \geq 1$ and $\operatorname{Diff}_n(\Sigma_2^0(2^{\mathbb{N}})) \subseteq \Gamma$ for each $n \in \omega$ then Γ is reasonably closed.

Proposition (L. Harrington, ? - J. R. Steel, 1977)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that Γ is reasonably closed and $A, B \in \Gamma$. If B is a true set for Γ and $A \leq_{W} B$ then $A \leq_{i} B$.

Proposition (R. Carroy, A. Medini, S. Müller - 2020)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that $\check{\Gamma} \neq \Gamma$. If $\mathcal{L}(\Gamma) \geq 1$ and $\operatorname{Diff}_n(\Sigma_2^0(2^{\mathbb{N}})) \subseteq \Gamma$ for each $n \in \omega$ then Γ is reasonably closed.

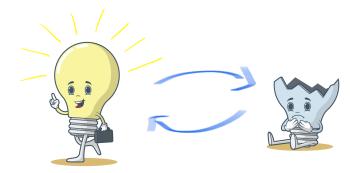
Proposition (L. Harrington, ? - J. R. Steel, 1977)

Let $\Gamma \subseteq BOR(2^{\mathbb{N}})$ such that Γ is reasonably closed and $A, B \in \Gamma$. If B is a true set for Γ and $A \leq_{W} B$ then $A \leq_{i} B$.

Proposition (R. Carroy, A. Medini, S. Müller - 2020)

Let $\Gamma \subseteq \operatorname{BOR}(2^{\mathbb{N}})$ such that $\check{\Gamma} \neq \Gamma$. If $\mathcal{L}(\Gamma) \geq 1$ and $\operatorname{Diff}_n(\Sigma_2^0(2^{\mathbb{N}})) \subseteq \Gamma$ for each $n \in \omega$ then Γ is reasonably closed.

Work in progress...



Definition: $\mathcal{F}_i^{\Pi_1^0} = \{ f \in \mathcal{F}_i \mid \operatorname{ran} f \text{ is closed} \}$. Let us notice $\leq_i^{\Pi_1^0}$ its induced reduction.

Conjecture: $((\Pi_1^0)_{\aleph_0}, \leqslant_i)$ is a linear order.

Theorem (R. Carroy, L. Motto Ros, S.)

The partial order $((\Pi_1^0)_{\aleph_0}, \leqslant_i^{\Pi_1^0})$ admits an antichain of size n for each $n \in \omega$.

Therefore $\leqslant^{\mathbf{\Pi}^0_1}_{\mathrm{i}}$ is finer than \leqslant_{i} .

Definition: $\mathcal{F}_{i}^{\Pi_{1}^{0}} = \{f \in \mathcal{F}_{i} \mid \operatorname{ran} f \text{ is closed}\}$. Let us notice $\leq_{i}^{\Pi_{1}^{0}}$ its induced reduction. **Conjecture:** $((\Pi_{1}^{0})_{\aleph_{0}}, \leq_{i})$ is a linear order.

Theorem (R. Carroy, L. Motto Ros, S.)

The partial order $((\Pi_1^0)_{\aleph_0},\leqslant_{\mathrm{i}}^{\Pi_1^0})$ admits an antichain of size n for each $n\in\omega$.

Therefore $\leqslant^{\mathbf{\Pi}^0_1}_{\mathrm{i}}$ is finer than \leqslant_{i} .

Definition: $\mathcal{F}_{i}^{\Pi_{1}^{0}} = \{f \in \mathcal{F}_{i} \mid \operatorname{ran} f \text{ is closed}\}$. Let us notice $\leq_{i}^{\Pi_{1}^{0}}$ its induced reduction. **Conjecture:** $((\Pi_{1}^{0})_{\aleph_{0}}, \leq_{i})$ is a linear order.

Theorem (R. Carroy, L. Motto Ros, S.)

The partial order $((\Pi_1^0)_{\aleph_0},\leqslant_i^{\Pi_1^0})$ admits an antichain of size n for each $n \in \omega$.

Therefore $\leqslant^{\mathbf{\Pi}^0_1}_{\mathrm{i}}$ is finer than \leqslant_{i} .

Definition: $\mathcal{F}_{i}^{\Pi_{1}^{0}} = \{f \in \mathcal{F}_{i} \mid \operatorname{ran} f \text{ is closed}\}$. Let us notice $\leq_{i}^{\Pi_{1}^{0}}$ its induced reduction. **Conjecture:** $((\Pi_{1}^{0})_{\aleph_{0}}, \leq_{i})$ is a linear order.

Theorem (R. Carroy, L. Motto Ros, S.)

The partial order $((\Pi_1^0)_{\aleph_0},\leqslant_i^{\Pi_1^0})$ admits an antichain of size n for each $n \in \omega$.

Therefore
$$\leqslant^{\mathbf{\Pi}^0_1}_{i}$$
 is finer than \leqslant_i .

Theorem (R. Carroy, S.)

The partial order $(\Pi^0_{\mathbf{2}},\leqslant^{\Pi^0_1}_i)$ is wqo.

Corollary (R. Carroy, S.)

The partial order $(\mathbf{\Delta_3^0}, \mathbf{\leqslant_i^{\Pi_1^0}})$ is wqo.

 $(\Sigma^{0}_{3},\leqslant^{\Pi^{0}_{1}}_{i})$ work in progress...

Theorem (R. Carroy, S.)

The partial order
$$(\mathbf{\Pi^0_2}, \leqslant^{\mathbf{\Pi^0_1}}_{\mathrm{i}})$$
 is wqo.

Corollary (R. Carroy, S.)

The partial order $(\Delta_{3}^{0}, \leqslant_{i}^{\Pi_{1}^{0}})$ is wqo.

 $(\mathbf{\Sigma_3^0}, \leqslant_{i}^{\mathbf{\Pi}_1^0})$ work in progress...

Theorem (R. Carroy, S.)

The partial order
$$(\mathbf{\Pi^0_2}, \leqslant^{\mathbf{\Pi^0_1}}_{\mathrm{i}})$$
 is wqo.

Corollary (R. Carroy, S.)

The partial order $({\bf \Delta_3^0},\leqslant_i^{{\bf \Pi}_1^0})$ is wqo.

 $(\Sigma_{\mathbf{3}}^{\mathbf{0}},\leqslant_{i}^{\Pi_{1}^{0}})$ work in progress...